Tufts University FLARE Scan Study

At the beginning of 2005 the Tufts group, in consultation with Adam Para, started a study of the efficiency and background rejection capabilities of liquid argon detectors.

Analysis was based on a blind scan of 450 events, carried out by 4 undergraduates with additional scanning of "signal" events by experts.

Scanning:

- •Events in liquid argon lend themselves to visual interpretation.
- •An estimate of what can be achieved with software in the fullness of time
- •Through a scan/truth comparison feedback loop even scanners starting from scratch can quickly develop pattern recognition capabilities.
- •Can make estimates of signal efficiency and background rejection even in the absence of any reconstruction software.
- •No reliance on truth information or parametrized smearing functions.
- •Established scanning methodologies based on our experience on previous experiments

Scanning Tools / Sample

Same tools as NOvA simulations

- Neutrino event generator: NEUGEN3. Derived from Soudan 2 event generator.
 Used by MINOS collaboration. Hugh Gallagher (Tufts) is the principal author.
- ◆ GEANT 3 detector simulation: trace resulting particles through a homogeneous volume of liquid argon. Store energy deposits in thin slices.
- ◆ LAIR (Liquid Argon Interactive Reconstruction), derived from MAW (Robert Hatcher), derived from PAW.
 - Project energy depositions onto the wire planes
 - Bin the collected charge according to the integration time
 - Ignore (for now) edge effects, assume signals well above the electronics noise
 - Assume two track resolution (2 μs)
 - Event display (2D, 3 projections)
 - Interactive vertex reconstruction
 - ♦ Interactive track/conversions reconstruction

(from Adam's Review talk)

Scanner Training

Our scanners were 4 undergrad Physics majors:

Brendan Bowler, Santiago Gangotena, Andrew Hall, and Joseph Wiener spent about 5-10 hours per week over the course of the spring semester.

Training:

- 1) Intro to neutrino interactions, oscillations, and particles in LAr
- 2) Intro to the detector geometry / stereo views and event displays. Look at single particles (μ , e, γ) with fixed energy and angle.
- 3) Scan ~50 events each from v_e and v_u CC and NC samples.
- 4) Scan ~50 event samples of mixed NC and CC events and check results against truth
- 5) Repeat step 4 a few times with varying amount of input from "experts" (Gallagher and Schneps)
- 6) Scan several dozen events from "hard" samples. y>0.8 CC events, NC events with 3 or more π^{o} .

Scan Methodology

Methodology of the "double blind" scan similar to that used in Soudan 2.

Each event is scanned independently by two students, and graded on a scale of 1 (background) -5 (signal). Truth information is not accessible. 450 events scanned.

For any events where the scores disagree by more than one unit, the students meet as a group to discuss the event and try to reach a compromise score.

Particularly difficult events or those which cause intractable dispute are passed up to the "experts". Experts also scanned every event which at least one student had given a 3 or higher. Experts scanning done by at least 2 of Gallagher/Mann/Schneps.

One student is assigned to "reconstruct" each event. Using the scan / graphical reconstruction package developed by Adam and others they assign a vertex to each event, and assign points in space which serve to identify each of the particles emerging from the primary vertex. Each particle is identified as shower-like, neutral, non-interacting, etc. \rightarrow input to subsequent analysis software (future work)

Scan Decisions (2 per event)

Correlations in Scan Decisions

Students scan decisions were highly correlated.

SCANNED 1

	_	SCANNER I					
		1	2	3	4	5	
SCANNER 2	1	202	24	0	1	0	
	2	24	15	3	1	1	
	3	2	2	1	3	0	
	4	1	1	2	4	0	
	_	>	0	0)	1	

- 1. Students were applying similar rules
- Topological features were clear for most events

NC Background: 282/290 within one unit

Signal v_e : 27/32 within one unit $\sqrt{}$ SCANNER 1

	1	2	3	4	5
1	2	0	0	0	0
2	1	2	0	1	1
3	1	0	0	0	0
4	1	1	0	5	0
5	0	0	0	3	14

Results

Results:

	N	pass	3	η
NC	290	4	-	72.5
signal $v_{\rm e}$	32	26	0.81	-
Beam v _e : CC	24	14	0.58	-
NC	8	0	-	
Beam \bar{v}_{e} : CC	13	10	0.77	-
NC	19	0		
v_{μ} CC	32	0	-	?
$\overline{\nu}_{\mu}$ CC	32	1	-	?

Of the 32 signal events, 27 passed through the student scan.

1 rejected in the expert scan 2-3 of the failed 5 might be OK

FOM approximately 2 times NOvA-I

Results

Decision Procedure

For each track:

Decision Procedure (software)

